Unit One: Exploring Data (4 weeks) Big Ideas:

- Analyzing Categorical Data
- Displaying Categorical Data
- Displaying Quantitative Data

Topics	Assessments/Activities	Standards
The definition of statistics	Homework for each section	S.ID.1 Represent data with plots on the real
	Quizzes	number line (dot plotsG, histograms, and
How to distinguish between categorical and		box plots) in the context of real-world
quantitative data	Collect data from students in class – categorical and	applications using the GAISE model.
	quantitative	
How to create and interpret pie and bar charts		S.ID.2 In the context of real-world
	M&M's activity for graphs, m&m's activity for standard	applications by using the GAISE model, use
How to create and interpret dot plots, stem	deviation	statistics appropriate to the shape of the
plots and histograms		data distribution to compare center
	Create graphs using Excel	(median and mean) and spread (mean
Understand measures of central tendency:		absolute deviationG, interquartile rangeG,
median, mean and mode	Deview and Departies aviews	and standard deviation) of two or more
Understand measures of spready range IOD	Review and Practice quizzes	different data sets
and standard doviation. Determine if a data	Lipit 1 Tost	S.ID.3 III the context of real-world
sot has outliers	Unit 1 Test	applications by using the GAISE model,
set has outliers.		spread in the context of the data sets
Find 5 number summary and create box plots		accounting for possible effects of extreme
Use TI84 to create histograms hoxplots and		data points (outliers)
find 5 number summary		
Choose the most appropriate numerical		
summary data for a data set		
,		

Unit Two: Modeling Distributions of Data (3 weeks)

Big Ideas:

- Describing locations in a distribution: percentiles and z-scores
- Normal distributions
- Empirical Rule
- Normal Distribution calculations

Topics	Assessments/Activities	Standards
		S.ID.4 Use the mean and standard
Measuring Position: Percentiles,	Homework and classwork for each section.	deviation of a data set to fit it to a
Cumulative Relative Frequency Graphs	Khan academy practice sets	normal distribution and to estimate
	Against All Odds – Video about Normal Distributions	population percentages. Recognize
Measuring Position: z-scores	and z-scores	that there are data sets for which
		such a procedure is not appropriate.
Normal Distributions. The 68-95-99.7	Quiz	Use calculators, spreadsheets, and
Rule The Standard Normal Distribution		tables to estimate areas under the
		normal curve.
Normal Distribution Calculations	Review and Practice quizzes.	
Use TI-84 to find areas under normal curve		
	Unit 2 Test	
Assessing Normality – examining graphs and		
Normal probability plots		

Unit Three: Describing Relationships: (2-3 weeks) Big Ideas:

- Scatterplots and Correlation
- Least-Squares Regression

Topics	Assessments/Activities	Standards
Explanatory and response variables	Guessing Ages activity	S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are
Displaying relationships: scatterplots and interpreting Measuring linear association: correlation	Videos – Scatterplots; Linear Regression Unit Activity – forearm length and foot length	related.★ a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions, or choose a function suggested by the context. Emphasize linear, quadratic, and exponential
Least-squares regression	Activity – relationship between	models. (A2, M3) b. Informally assess the fit of a function by discussing
Interpreting a regression line and predicting values	parent and student heights Homework for each section	residuals. (A2, M3) c. Fit a linear function for a scatterplot that suggests a linear association. (A1, M1) S.ID.7 Interpret the slope (rate of change) and the
Residuals and the least-squares	Quizzes as needed	intercept (constant term) of a linear model in the context of the data.★
regression line	Review and Practice Unit Test	S.ID.8 Compute (using technology) and interpret the
How well the line fits the data: residual plots		S.ID.9 Distinguish between correlation and causation
Use TI-84 to find regression line, correlation coefficient and graph scatterplots		

Unit Four: Designing Studies: (3 weeks) Big Ideas:

- Sampling and Surveys
- Experiments
- Inference and Ethics

Topics	Assessments/Activities	Standards
		S.IC.1 Understand statistics as a process
Introduction, Sampling and Surveys, How to	Homework for each section	for making inferences about population
Sample Badly, How to Sample Well: Random	2 Quizzes (mid and end of unit)	parameters based on a random sample
Samples		from that population
Other Sampling Methods	Group project – design an experiment to	
Observational studies vs. Experiments	evaluate how a treatment affects stress levels	S.IC.3 Recognize the purposes of and
Three Principles of Experimental Design		differences among sample surveys,
	Activity – Experiments in the News	experiments, and observational studies;
Experiments: What Can Go Wrong? Inference for		explain how randomization relates to
Experiments	Group project – Response Bias project	each.
Blocking, Matched Pairs Design		
Scope of Inference, the Challenges of Establishing		
Causation		

Unit Five: Probability: (3-4 weeks)

Big Ideas:

- Probability and Simulation
- Probability Rules
- Conditional Probability and Independence

Introduction, The Idea of Probability Introduction, The Idea of Probability Probability Models, Basic Rules of Probability, Experimental versus theoretical Two-Way Tables and Probability, Venn Diagrams and Probability, Tree Diagrams Conditional Probability and Independence, Multiplication Rule, Addition Rule Counting methods – combinations and permutation Unit 5 Test Unit 5 Test Sc.P.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events A and B are independent if and only if the probability of A and B occurring together is the product of their probability. Tree Diagrams Conditional Probability and Independence, Multiplication Rule, Addition Rule Counting methods – combinations and permutation Unit 5 Test Unit 5 Test Unit 5 Test Unit 5 Test Diagrams and Probability of A given B as the fraction of B's outcomes are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability. Counting methods – combinations and permutation Unit 5 Test Coloce (GR) GR) Sc.P.4 Recognize and expl	Topics	Assessments/Activities	Standards
Probability Models, Basic Rules of Probability, Experimental versus theoreticalactivity"not").* \$.CP.2 Understand that two events A and B are independent if and only if the probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability, of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A and B occurring together is the product of their probability of A given B as P(A and B)/P(B), and interpret tindependence of A and B as saying that the conditional probability of B given A is the same as the probability of A, and the conditional probability of B given A is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B sc.CP.4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of A given	Introduction, The Idea of Probability	Pass the Pigs game design	S.CP.1 Describe events as subsets of a sample space (the set of outcomes) using characteristics (or categories) of the outcomes, or as unions, intersections, or complements of other events ("or," "and,"
Probability, Experimental versus and only if the probability of A and B occurring together is the product of theoretical Homework for each Two-Way Tables and Probability, Venn basection (Larson book and Ready, Set, Go module) Diagrams and Probability and Independence, Quiz mid-unit Multiplication Rule, Addition Rule Quiz mid-unit Counting methods – combinations and permutation Unit 5 Test Unit 5 Test Unit 5 Test S.CP.5 Recognize and explain the concepts of conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model.	Probability Models, Basic Rules of	activity	"not").★ S.CP.2 Understand that two events A and B are independent if
 theoretical Two-Way Tables and Probability, Venn Diagrams and Probability, Tree Diagrams Conditional Probability, Tree Diagrams Conditional Probability and Independence, Multiplication Rule, Addition Rule Counting methods – combinations and permutation Unit 5 Test CP-5 Recognize and exeryday istuations S.CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B) = P(A) + P(B)	Probability, Experimental versus		and only if the probability of A and B occurring together is the product of
Two-Way Tables and Probability, Venn Diagrams and Probability, Tree Diagramssection (Larson book and Ready, Set, Go module)independent. ★ S.CP.3 Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability of A, and the conditional probability of B given A is the same as the probability of B S.CP.4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probability of A given B as the fraction of B's S.CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. (+) S.CP.8 Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)·P(B A) = P(B)·P(A B), and interpret the answer in terms of the model.	theoretical	Homework for each	their probabilities, and use this characterization to determine if they are
Conditional Probability and Independence, Multiplication Rule, Addition RuleQuiz mid-unitof A, and the conditional probability of B given A is the same as the probability of BCounting methods – combinations and permutationUnit 5 TestS.CP.4 Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities. S.CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations S.CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. (+) S.CP.8 Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)-P(B A) = P(B)-P(A B), and interpret the answer in terms of the model.	Two-Way Tables and Probability, Venn Diagrams and Probability, Tree Diagrams	section (Larson book and Ready, Set, Go module)	independent. \bigstar S.CP.3 Understand the conditional probability of A given B as P(A and B)/P(B), and interpret independence of A and B as saying that the conditional probability of A given B is the same as the probability
Multiplication Rule, Addition Rule Counting methods – combinations and permutation Unit 5 Test Unit 5	Conditional Probability and Independence.	Quiz mid-unit	of A, and the conditional probability of B given A is the same as the
Counting methods – combinations and permutation Unit 5 Test Unit 5	Multiplication Rule, Addition Rule		S CP 4 Construct and interpret two-way frequency tables of data when
Counting methods – combinations and permutationUnit 5 Testtwo-way table as a sample space to decide if events are independent and to approximate conditional probabilities. S.CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations S.CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. (+) S.CP.8 Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)·P(B A) = P(B)·P(A B), and interpret the answer in terms of the model.			two categories are associated with each object being classified. Use the
S.CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations S.CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. (+) S.CP.8 Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)·P(B A) = P(B)·P(A B), and interpret the answer in terms of the model.	Counting methods – combinations and permutation	Unit 5 Test	two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.
S.CP.6 Find the conditional probability of A given B as the fraction of B's outcomes that also belong to A, and interpret the answer in terms of the model. S.CP.7 Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$, and interpret the answer in terms of the model. (+) S.CP.8 Apply the general Multiplication Rule in a uniform probability model, $P(A \text{ and } B) = P(A) \cdot P(B A) = P(B) \cdot P(A B)$, and interpret the answer in terms of the model.			S.CP.5 Recognize and explain the concepts of conditional probability and independence in everyday language and everyday situations
outcomes that also belong to A, and interpret the answer in terms of the model. S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) – P(A and B), and interpret the answer in terms of the model. (+) S.CP.8 Apply the general Multiplication Rule in a uniform probability model, P(A and B) = $P(A) \cdot P(B A) = P(B) \cdot P(A B)$, and interpret the answer in terms of the model.			S.CP.6 Find the conditional probability of A given B as the fraction of B's
model. S.CP.7 Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$, and interpret the answer in terms of the model. (+) S.CP.8 Apply the general Multiplication Rule in a uniform probability model, $P(A \text{ and } B) = P(A) \cdot P(B A) = P(B) \cdot P(A B)$, and interpret the answer in terms of the model.			outcomes that also belong to A, and interpret the answer in terms of the
B), and interpret the answer in terms of the model. (+) S.CP.8 Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)·P(B A) = P(B)·P(A B), and interpret the answer in terms of the model.			model. S.CP.7 Apply the Addition Rule, $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
general Multiplication Rule in a uniform probability model, P(A and B) = P(A)·P(B A) = P(B)·P(A B), and interpret the answer in terms of the model.			B), and interpret the answer in terms of the model. (+) S.CP.8 Apply the
P(A)·P(B A) = P(B)·P(A B), and interpret the answer in terms of the model.			general Multiplication Rule in a uniform probability model, P(A and B) =
model.			$P(A) \cdot P(B A) = P(B) \cdot P(A B)$, and interpret the answer in terms of the
$(1) \subseteq CD$ (the permutations and equilibrium to constant whether the second state is the second state in the second state is			model.
(+) S.CP.9 Use permutations and combinations to compute probabilities			(+) S.CP.9 Use permutations and combinations to compute probabilities

Also: Learning Cards for each chapter, share research or news articles each unit that use statistics; and end of semester poster project

Unit Six: Random Variables: (3 weeks)

Big Ideas:

- Discrete and Continuous Random Variables
- Binomial and Geometric random variables

Topics	Assessments/Activities	Standards
Probability Distributions: Discrete random		S.MD.1 Define a random variable for a
Variables, Mean (Expected Value) of a Discrete	Homework for each section (Larson book)	quantity of interest by assigning a numerical
Random Variable		value to each event in a sample space; graph
	Candy family activity for Binomials	the corresponding probability distribution
Standard Deviation (and Variance) of a Discrete	Applying Binomials: Is it Smart to Foul activity	using the same graphical displays as for data
Random Variable		distributions.
Rinomial Random Variables, Rinomial	Quiz	
Probabilities		S.MD.2 Calculate the expected value of a
		random variable; interpret it as the mean of
Mean and Standard Deviation of a Binomial		the probability distribution.
Distribution		
		S.MD.3 Develop a probability distribution for
Geometric Distributions		a random variable defined for a sample space
		in which theoretical probabilities can be
		calculated; find the expected value

Unit Seven: Sampling Distributions: (3-4 Weeks)

Big Ideas: Sampling Dist., Central Limit Theorem, Confidence intervals, proportion and mean

Topics	Assessments/Activities	Standards
		Sampling Distribution
Parameters and Statistics	Resource: Picturing the World Textbook (Larson)	a) Sampling distribution of a
Sampling Variability, Describing Sampling		sample proportion
Distributions	Red, White and Blue Chips Activity for sampling	b) Sampling distribution of a
The Control Limit Theorem	distributions	sample mean
		c) Central limit theorem
The Idea of a Confidence Interval. Interpreting	m&m's activity for finding confidence interval	d) t distribution
Confidence Levels and Confidence Intervals,		Estimation
Constructing a Confidence Interval	Homework for each section	e) Estimating population
	8.1 A and 8.2A practice AP quizzes	parameters and margins of
When σ Is Known: The One-Sample z Interval for	Quiz	error
a Population Mean		f) Logic of confidence intervals,
	Review and practice using old FRP questions	meaning of conf. level and
precision	Unit test	conf. intervals, properties of
		a) Interpreting CL correctly
When σ Is Unknown: The t Distributions,		g) interpreting creative
Constructing a Confidence Interval for μ		
Estimating <i>p</i> , Constructing a Confidence Interval		

Unit Eight: Hypothesis Testing (4 weeks)

Big Ideas: Significance tests, test about population proportion, test for population mean

Topics	Assessments/Activities	Standards
The Reasoning of Significance Tests, Stating Hypotheses and identifying the claim	Resource: Picturing the World textbook	Tests of significance a) Logic of significance testing,
Left, Right and Two-tailed tests	Coin flipping simulation to discuss type I and II errors	null and alternative hypotheses, P-values, one
Type I and Type II Errors, level of significance	Homework for each section, worksheet for practicing writing hypotheses	and two-sided tests, concepts of Type I and Type
Carrying Out a Significance Test, The One-Sample z Test for a Proportion	Quiz Review and Practice test from text	II errors, concept of power b) Large sample test for proportion
Carrying Out a Significance Test for μ (large samples) the z-test and (small samples) the one Sample t Test	Unit test	c) Test for a mean, large and small samples
Hypothesis test for proportions – using reject regions and the p-value method		
Interpreting hypothesis tests in context		

Unit Nine: Hypothesis Testing – Two Samples (2 weeks)

Big Ideas: Two-sample hypothesis tests for proportion, and for mean

Topics	Assessments/Activities	Standards
Testing the difference between means (large	Resource: Picturing the World textbook (Larson)	Tests of significance
samples)		a) Logic of significance testing,
Dependent and Independent samples		null and alternative
2 Cample test for difference in means (small		hypotheses, P-values
samples) – Independent samples	Homework for each section	b) Large sample and small
sumplesy independent sumples		sample tests for difference in
2 Sample test for means, with dependent samples	Quiz	means.
		c) Test for difference in
Hypothesis test for difference between	Review	proportions
proportions	Test	
Interpreting hypothesis tests in context		

Unit Ten: Inference for Distributions of Categorical Data (1-2 weeks)

Big Ideas: Chi-Square Goodness of Fit Tests, Inference for Relationships

Topics	Assessments	Standards
Comparing Observed and Expected Counts		Sampling Distributions
	Candy activity – m&m's Goodness of Fit	a) Chi-square Distributions
		Tests of significance
The Chi-Square Goodness-of-Fit Test	Homework from section 10.1 and 10.2, Larson	 a) Chi-square test for goodness
Testing for independence using chi-square	textbook	of fit, homogeneity of
(review checking for independence using		proportions, and
conditional probabilities)		independence (one and two-
		way tables)

Unit Eleven: Inference for Regression (1 week) Big Ideas:

Topics	Assessments	Standards
Review correlation of two variables, scatterplots, regression lines and correlation coefficents. Review residual plots, and other ways to determine if a relationship is linear Inference for linear regression - Sampling distribution for slope - Checking conditions for inference Constructing confidence interval for the slope Performing a significance test for the slope	Review assignments for regression Helicopter Activity	S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related. a. Informally assess the fit of a function by discussing residuals. (A2, M3) b. Fit a linear function for a scatterplot that suggests a linear association. (A1, M1) S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.★ S.ID.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.★

Other end-of-year activities:

End Of Year Project (Display on poster and present to class) Research a famous statistician, create a Powerpoint, and share with class